TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 **HOMEWORK 4**

MATHIAS BRAUN AND WENHAO ZHAO

Homework 4.1 (Absolute convergence of infinite products). Let $(a_j)_{j \in \mathbb{N}}$ be a sequence in C. We say the infinite product $\prod_{j=1}^{\infty} a_j$ converges absolutely if there exists $j_0 \in \mathbb{N}$ such that $a_j \neq 0$ for every $j \geq j_0$ and $(|\log a_j|)_{j \geq j_0}$ is summable, i.e.

$$\sum_{j\geq j_0} |\log a_j| < \infty.$$

- a. Show absolute convergence for infinite products implies their convergence.
- b. Show a product of the form $\prod_{i=1}^{\infty} (1+b_i)$ converges absolutely if and only if

$$\sum_{j=1}^{\infty} |b_j| < \infty.$$

Homework 4.2 (Examples of infinite products*). Examine if the following infinite products exist in the sense of Definition 3.1. If so, calculate their value¹.

a.
$$\prod_{n=1}^{\infty} \left[1 - \frac{1}{(n+1)^2} \right]$$
.

b.
$$\prod_{n=1}^{\infty} \left[1 - \frac{1}{n} \right]$$
c.
$$\prod_{n=3}^{\infty} \frac{n^2 - 4}{n^2 - 1}$$
.

c.
$$\prod_{n=3}^{\infty} \frac{n^2 - 4}{n^2 - 1}$$

d.
$$\prod_{n=1}^{\infty} \frac{(1+n^{-1})^2}{1+2n^{-1}}$$

Homework 4.3 (Diverging products). Let $(a_j)_{j\in\mathbb{N}}$ form a sequence in $[0,+\infty)$ with the property $\sum_{j=1}^{\infty} (1 - a_j) = \infty$. Show² that

$$\lim_{n\to\infty}\prod_{j=1}^n a_j=0.$$

Homework 4.4 (A useful criterion for the convergence of infinite products). Let $(a_j)_{j \in \mathbb{N}}$ be a sequence in C. Assume $\sum_{j=1}^{\infty} |a_j|^2 < \infty$. Show $\prod_{j=1}^{\infty} (1+a_j)$ converges if and only if $\sum_{j=1}^{\infty} a_j$ converges. Conclude the product $\prod_{j=1}^{\infty} (1+z/j)$ converges if and only if z=0.

Date: October 14, 2024.

¹**Hint.** In all examples, you can directly calculate the value of the partial products.

²**Hint.** Use the inequality $t \le e^{t-1}$ for every $t \in \mathbf{R}$.